Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genomic Selection for Late Blight and Common Scab Resistance in Tetraploid Potato (Solanum tuberosum).

Identifieur interne : 000756 ( Main/Exploration ); précédent : 000755; suivant : 000757

Genomic Selection for Late Blight and Common Scab Resistance in Tetraploid Potato (Solanum tuberosum).

Auteurs : Felix Enciso-Rodriguez [États-Unis] ; David Douches [États-Unis] ; Marco Lopez-Cruz [États-Unis] ; Joseph Coombs [États-Unis] ; Gustavo De Los Campos [États-Unis]

Source :

RBID : pubmed:29794167

Descripteurs français

English descriptors

Abstract

Potato (Solanum tuberosum) is a staple food crop and is considered one of the main sources of carbohydrates worldwide. Late blight (Phytophthora infestans) and common scab (Streptomyces scabies) are two of the primary production constraints faced by potato farming. Previous studies have identified a few resistance genes for both late blight and common scab; however, these genes explain only a limited fraction of the heritability of these diseases. Genomic selection has been demonstrated to be an effective methodology for breeding value prediction in many major crops (e.g., maize and wheat). However, the technology has received little attention in potato breeding. We present the first genomic selection study involving late blight and common scab in tetraploid potato. Our data involves 4,110 (Single Nucleotide Polymorphisms, SNPs) and phenotypic field evaluations for late blight (n=1,763) and common scab (n=3,885) collected in seven and nine years, respectively. We report moderately high genomic heritability estimates (0.46 ± 0.04 and 0.45 ± 0.017, for late blight and common scab, respectively). The extent of genotype-by-year interaction was high for late blight and low for common scab. Our assessment of prediction accuracy demonstrates the applicability of genomic prediction for tetraploid potato breeding. For both traits, we found that more than 90% of the genetic variance could be captured with an additive model. For common scab, the highest prediction accuracy was achieved using an additive model. For late blight, small but statistically significant gains in prediction accuracy were achieved using a model that accounted for both additive and dominance effects. Using whole-genome regression models we identified SNPs located in previously reported hotspots regions for late blight, on genes associated with systemic disease resistance responses, and a new locus located in a WRKY transcription factor for common scab.

DOI: 10.1534/g3.118.200273
PubMed: 29794167
PubMed Central: PMC6027896


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genomic Selection for Late Blight and Common Scab Resistance in Tetraploid Potato (
<i>Solanum tuberosum</i>
).</title>
<author>
<name sortKey="Enciso Rodriguez, Felix" sort="Enciso Rodriguez, Felix" uniqKey="Enciso Rodriguez F" first="Felix" last="Enciso-Rodriguez">Felix Enciso-Rodriguez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant, Soil, and Microbial Sciences gdeloscampos@epi.msu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Plant, Soil</wicri:regionArea>
<wicri:noRegion>Soil</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Douches, David" sort="Douches, David" uniqKey="Douches D" first="David" last="Douches">David Douches</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant, Soil, and Microbial Sciences gdeloscampos@epi.msu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Plant, Soil</wicri:regionArea>
<wicri:noRegion>Soil</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lopez Cruz, Marco" sort="Lopez Cruz, Marco" uniqKey="Lopez Cruz M" first="Marco" last="Lopez-Cruz">Marco Lopez-Cruz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant, Soil, and Microbial Sciences gdeloscampos@epi.msu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Plant, Soil</wicri:regionArea>
<wicri:noRegion>Soil</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Coombs, Joseph" sort="Coombs, Joseph" uniqKey="Coombs J" first="Joseph" last="Coombs">Joseph Coombs</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant, Soil, and Microbial Sciences gdeloscampos@epi.msu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Plant, Soil</wicri:regionArea>
<wicri:noRegion>Soil</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="De Los Campos, Gustavo" sort="De Los Campos, Gustavo" uniqKey="De Los Campos G" first="Gustavo" last="De Los Campos">Gustavo De Los Campos</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology & Biostatistics gdeloscampos@epi.msu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Statistics & Probability.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Statistics & Probability.</wicri:noCountry>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, 48824.</nlm:affiliation>
<orgName type="university">Université d'État du Michigan</orgName>
<country>États-Unis</country>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29794167</idno>
<idno type="pmid">29794167</idno>
<idno type="doi">10.1534/g3.118.200273</idno>
<idno type="pmc">PMC6027896</idno>
<idno type="wicri:Area/Main/Corpus">000754</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000754</idno>
<idno type="wicri:Area/Main/Curation">000754</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000754</idno>
<idno type="wicri:Area/Main/Exploration">000754</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genomic Selection for Late Blight and Common Scab Resistance in Tetraploid Potato (
<i>Solanum tuberosum</i>
).</title>
<author>
<name sortKey="Enciso Rodriguez, Felix" sort="Enciso Rodriguez, Felix" uniqKey="Enciso Rodriguez F" first="Felix" last="Enciso-Rodriguez">Felix Enciso-Rodriguez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant, Soil, and Microbial Sciences gdeloscampos@epi.msu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Plant, Soil</wicri:regionArea>
<wicri:noRegion>Soil</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Douches, David" sort="Douches, David" uniqKey="Douches D" first="David" last="Douches">David Douches</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant, Soil, and Microbial Sciences gdeloscampos@epi.msu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Plant, Soil</wicri:regionArea>
<wicri:noRegion>Soil</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lopez Cruz, Marco" sort="Lopez Cruz, Marco" uniqKey="Lopez Cruz M" first="Marco" last="Lopez-Cruz">Marco Lopez-Cruz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant, Soil, and Microbial Sciences gdeloscampos@epi.msu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Plant, Soil</wicri:regionArea>
<wicri:noRegion>Soil</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Coombs, Joseph" sort="Coombs, Joseph" uniqKey="Coombs J" first="Joseph" last="Coombs">Joseph Coombs</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant, Soil, and Microbial Sciences gdeloscampos@epi.msu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Plant, Soil</wicri:regionArea>
<wicri:noRegion>Soil</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="De Los Campos, Gustavo" sort="De Los Campos, Gustavo" uniqKey="De Los Campos G" first="Gustavo" last="De Los Campos">Gustavo De Los Campos</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology & Biostatistics gdeloscampos@epi.msu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation>
<nlm:affiliation>Department of Statistics & Probability.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Statistics & Probability.</wicri:noCountry>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, 48824.</nlm:affiliation>
<orgName type="university">Université d'État du Michigan</orgName>
<country>États-Unis</country>
<placeName>
<settlement type="city">East Lansing</settlement>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">G3 (Bethesda, Md.)</title>
<idno type="eISSN">2160-1836</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Disease Resistance (genetics)</term>
<term>Genome, Plant (MeSH)</term>
<term>Genomics (methods)</term>
<term>Genotype (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Selection, Genetic (MeSH)</term>
<term>Solanum tuberosum (genetics)</term>
<term>Solanum tuberosum (microbiology)</term>
<term>Streptomyces (MeSH)</term>
<term>Tetraploidy (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Génomique (méthodes)</term>
<term>Génotype (MeSH)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Polymorphisme de nucléotide simple (MeSH)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Résistance à la maladie (génétique)</term>
<term>Solanum tuberosum (génétique)</term>
<term>Solanum tuberosum (microbiologie)</term>
<term>Streptomyces (MeSH)</term>
<term>Sélection génétique (MeSH)</term>
<term>Tétraploïdie (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Disease Resistance</term>
<term>Plant Diseases</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Résistance à la maladie</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genomics</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Génomique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Genome, Plant</term>
<term>Genotype</term>
<term>Models, Genetic</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Reproducibility of Results</term>
<term>Selection, Genetic</term>
<term>Streptomyces</term>
<term>Tetraploidy</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Génome végétal</term>
<term>Génotype</term>
<term>Modèles génétiques</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Reproductibilité des résultats</term>
<term>Streptomyces</term>
<term>Sélection génétique</term>
<term>Tétraploïdie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Potato (
<i>Solanum tuberosum</i>
) is a staple food crop and is considered one of the main sources of carbohydrates worldwide. Late blight (
<i>Phytophthora infestans</i>
) and common scab (
<i>Streptomyces scabies</i>
) are two of the primary production constraints faced by potato farming. Previous studies have identified a few resistance genes for both late blight and common scab; however, these genes explain only a limited fraction of the heritability of these diseases. Genomic selection has been demonstrated to be an effective methodology for breeding value prediction in many major crops (
<i>e.g.</i>
, maize and wheat). However, the technology has received little attention in potato breeding. We present the first genomic selection study involving late blight and common scab in tetraploid potato. Our data involves 4,110 (Single Nucleotide Polymorphisms, SNPs) and phenotypic field evaluations for late blight (n=1,763) and common scab (n=3,885) collected in seven and nine years, respectively. We report moderately high genomic heritability estimates (0.46 ± 0.04 and 0.45 ± 0.017, for late blight and common scab, respectively). The extent of genotype-by-year interaction was high for late blight and low for common scab. Our assessment of prediction accuracy demonstrates the applicability of genomic prediction for tetraploid potato breeding. For both traits, we found that more than 90% of the genetic variance could be captured with an additive model. For common scab, the highest prediction accuracy was achieved using an additive model. For late blight, small but statistically significant gains in prediction accuracy were achieved using a model that accounted for both additive and dominance effects. Using whole-genome regression models we identified SNPs located in previously reported hotspots regions for late blight, on genes associated with systemic disease resistance responses, and a new locus located in a WRKY transcription factor for common scab.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29794167</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>11</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2160-1836</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2018</Year>
<Month>07</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>G3 (Bethesda, Md.)</Title>
<ISOAbbreviation>G3 (Bethesda)</ISOAbbreviation>
</Journal>
<ArticleTitle>Genomic Selection for Late Blight and Common Scab Resistance in Tetraploid Potato (
<i>Solanum tuberosum</i>
).</ArticleTitle>
<Pagination>
<MedlinePgn>2471-2481</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/g3.118.200273</ELocationID>
<Abstract>
<AbstractText>Potato (
<i>Solanum tuberosum</i>
) is a staple food crop and is considered one of the main sources of carbohydrates worldwide. Late blight (
<i>Phytophthora infestans</i>
) and common scab (
<i>Streptomyces scabies</i>
) are two of the primary production constraints faced by potato farming. Previous studies have identified a few resistance genes for both late blight and common scab; however, these genes explain only a limited fraction of the heritability of these diseases. Genomic selection has been demonstrated to be an effective methodology for breeding value prediction in many major crops (
<i>e.g.</i>
, maize and wheat). However, the technology has received little attention in potato breeding. We present the first genomic selection study involving late blight and common scab in tetraploid potato. Our data involves 4,110 (Single Nucleotide Polymorphisms, SNPs) and phenotypic field evaluations for late blight (n=1,763) and common scab (n=3,885) collected in seven and nine years, respectively. We report moderately high genomic heritability estimates (0.46 ± 0.04 and 0.45 ± 0.017, for late blight and common scab, respectively). The extent of genotype-by-year interaction was high for late blight and low for common scab. Our assessment of prediction accuracy demonstrates the applicability of genomic prediction for tetraploid potato breeding. For both traits, we found that more than 90% of the genetic variance could be captured with an additive model. For common scab, the highest prediction accuracy was achieved using an additive model. For late blight, small but statistically significant gains in prediction accuracy were achieved using a model that accounted for both additive and dominance effects. Using whole-genome regression models we identified SNPs located in previously reported hotspots regions for late blight, on genes associated with systemic disease resistance responses, and a new locus located in a WRKY transcription factor for common scab.</AbstractText>
<CopyrightInformation>Copyright © 2018 Enciso-Rodriguez et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Enciso-Rodriguez</LastName>
<ForeName>Felix</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">0000-0002-3490-6586</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant, Soil, and Microbial Sciences gdeloscampos@epi.msu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Douches</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant, Soil, and Microbial Sciences gdeloscampos@epi.msu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lopez-Cruz</LastName>
<ForeName>Marco</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant, Soil, and Microbial Sciences gdeloscampos@epi.msu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coombs</LastName>
<ForeName>Joseph</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant, Soil, and Microbial Sciences gdeloscampos@epi.msu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Los Campos</LastName>
<ForeName>Gustavo</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology & Biostatistics gdeloscampos@epi.msu.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Statistics & Probability.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, 48824.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM101219</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>07</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>G3 (Bethesda)</MedlineTA>
<NlmUniqueID>101566598</NlmUniqueID>
<ISSNLinking>2160-1836</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="Y">Genomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012641" MajorTopicYN="Y">Selection, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011198" MajorTopicYN="N">Solanum tuberosum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013302" MajorTopicYN="N">Streptomyces</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057891" MajorTopicYN="Y">Tetraploidy</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">BGLR</Keyword>
<Keyword MajorTopicYN="Y">Bayesian</Keyword>
<Keyword MajorTopicYN="Y">Common scab</Keyword>
<Keyword MajorTopicYN="Y">Disease resistance</Keyword>
<Keyword MajorTopicYN="Y">Genome-Wide Regression</Keyword>
<Keyword MajorTopicYN="Y">Genomic Selection</Keyword>
<Keyword MajorTopicYN="Y">Late blight</Keyword>
<Keyword MajorTopicYN="Y">Polyploidy</Keyword>
<Keyword MajorTopicYN="Y">Potato</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29794167</ArticleId>
<ArticleId IdType="pii">g3.118.200273</ArticleId>
<ArticleId IdType="doi">10.1534/g3.118.200273</ArticleId>
<ArticleId IdType="pmc">PMC6027896</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2010 Oct;186(2):713-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20813882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Mar;181(3):1115-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19139145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Dairy Sci. 2008 Nov;91(11):4414-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18946147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(8):2133-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18441339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jun 15;8:1040</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28674545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2006 Dec;96(12):1363-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2015 Sep 14;5(11):2357-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26374597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 May 15;8(5):e63277</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23691007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2015 Sep 23;6:294</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26442110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2014 Aug;20:35-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24840291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 May 28;10(5):e0128327</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26020237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2013 Jun 21;3(6):1003-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23589519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Oct;198(2):483-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25009151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Biotechnol. 2011;2011:354801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22131803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 May 05;11(5):e1005048</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25942577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jul 10;475(7355):189-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21743474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Feb;193(2):327-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Feb;193(2):347-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23222650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2008 Jan;116(2):193-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Photochem Photobiol B. 2014 Dec;141:308-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25463683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Apr;157(4):1819-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11290733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2014 Dec;20(12):3621-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24687916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Feb;175(2):879-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17151263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):1648-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19420325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2017 Oct;130(10):2091-2108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28707250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jun 09;11(6):e0156254</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27281327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Genome. 2017 Nov;10(3):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29293805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e34775</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22493716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Breed Genet. 2017 Jun;134(3):232-241</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28508483</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
<settlement>
<li>East Lansing</li>
</settlement>
<orgName>
<li>Université d'État du Michigan</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Enciso Rodriguez, Felix" sort="Enciso Rodriguez, Felix" uniqKey="Enciso Rodriguez F" first="Felix" last="Enciso-Rodriguez">Felix Enciso-Rodriguez</name>
</noRegion>
<name sortKey="Coombs, Joseph" sort="Coombs, Joseph" uniqKey="Coombs J" first="Joseph" last="Coombs">Joseph Coombs</name>
<name sortKey="De Los Campos, Gustavo" sort="De Los Campos, Gustavo" uniqKey="De Los Campos G" first="Gustavo" last="De Los Campos">Gustavo De Los Campos</name>
<name sortKey="De Los Campos, Gustavo" sort="De Los Campos, Gustavo" uniqKey="De Los Campos G" first="Gustavo" last="De Los Campos">Gustavo De Los Campos</name>
<name sortKey="Douches, David" sort="Douches, David" uniqKey="Douches D" first="David" last="Douches">David Douches</name>
<name sortKey="Lopez Cruz, Marco" sort="Lopez Cruz, Marco" uniqKey="Lopez Cruz M" first="Marco" last="Lopez-Cruz">Marco Lopez-Cruz</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000756 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000756 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29794167
   |texte=   Genomic Selection for Late Blight and Common Scab Resistance in Tetraploid Potato (Solanum tuberosum).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29794167" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024